

Energy Management System National Energy Efficiency Conference September 2012

PCMSB

Company Name	Petronas Chemical MTBE Sdn Bhd	
Product	Methyl Tertiary Butyl Ether (MTBE) Propylene (C3=)	
Capacity	300,000 MT/year MTBE 80,000 MT/year propylene	
Build	1992	
Location	Gebeng Industrial Area, Kuantan, Pahang	
Specialty	The only dual feed plant in the world	

Agenda

- Needs of EMS
- Background
- EMS Framework
- Energy Operating Parameters
- Energy Optimization Case Study
- Monitoring Cycle
- Benefits
- Key Success Factors
- Alignment to ISO 50001

The Needs of Energy Management System

- To have an online energy monitoring system
- Cost effective plant operation (optimizing energy)
- Create awareness among staff on the importance of energy efficiency
- To monitor instantaneous energy optimization condition of the plant.

Background

- 2007 PCMSB Management initiative for systematic drive to improve Energy Performance
 - Definition of Energy KPIs
 - Identification of Energy Parameters and Optimization of Targets
 - Online Energy Dashboards
 - Training of Process Engineers and Operators
- 2008 Mecip Malaysia / Actsys Consortium awarded project to implement Energy Management System
- Jan 2009 Completion of Project

EMS Framework

EMS Framework – Petronas Chemical MTBE Sdn Bhd (PCMSB)

Energy Operating Parameters

EQUIPMENT	PARAMETERS	EFFECT
Column	✓ Reboiler Ratio✓ Column Pressure	Steam Usage
Reactor	✓ Inlet Temperature✓ HC H2 Ratio	 Steam Usage at charge heater HC Feed
Steam Turbine	✓ Isentropic Efficiency	Steam flow to turbine
Gas Turbine	✓ Exhaust to bypass stack✓ Heat Rate	Fuel Gas Flow
Compressor	✓ Polytropic Efficiency✓ Spillback	Fuel Gas Flow
Boilers	✓ Excess Oxygen✓ Stack Temperature	Fuel Gas Flow
Heaters / Furnace	✓ Excess Oxygen✓ Stack Temperature	Fuel Gas Flow

Case Study

Optimization WHB Economizer BFW Inlet temp

<u>Aim</u> : To determine the target heater stack temperature

Observation : Stack temp and corresponding HPS production is

- » a function of the load
- » a strong function of the controlled BFW temperature.

Case Study

Optimization WHB Economizer BFW Inlet temp

•

Testrun

Setpoint was lowered to 140 degC

Result

- stack temperature reduction from 240 to 234 degC.
- increased HP steam production of almost 1 T/H

Savings

Fuel savings of RM350K/year

Energy Management System Monitoring Cycle

Energy Management System Monitoring Cycle

Realized Benefits from EMS

Other Initiatives

• Based on Utility Optimizer,

Change turbine driven pumps to motor driven (7Nos)
 reduces LP steam venting by 10t/h – estimated savings of RM 2.5 million

- Benefits
 - Minimize Steam Loss
 - Minimize FG consumption
 - Reduced maintenance cost on turbines
 - Savings on turbine hot stand by steam consumption

Key Success Factors

- Real time monitoring
- Automated process calculations
- Increased interaction between operators and managers
- Reliability of instruments (Mass Balance)
- Equipment performance (Efficiency)
- Continuous Energy Improvement
- Open and transparent communication between departments

ISO 50001 Energy Management System

Thank you

